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Biomedical data are usually high-dimensional

Number of samples (n) is relatively
small whereas number of features (p)
can be large
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Sometimes p>>n
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Problems

Difficulty in interpretation of data

The curse of dimensionality
e Data points are ‘sparse’ in high-dimensional space
e Statistical methods that rely on ‘local’ properties may not work well
o Extracted patterns may be unstable

Dimension reduction is usually the first step



| ——
s

Dimension Reduction

Mapping the data to a low-dimensional space

e For each p-dimensional data point, * = (Xl’ X, K X ) find a k-
dimensional representation x (x1 , X, KX, ) that captures the content of
original data, where

When there is additional information (supervised)

o feature selection, ridge regression, LASSO, and other regularization
methods

When we only have X alone (unsupervised)

 feature extraction with linear transformation (projection) of the original
data

e nonlinear extensions

In this lecture, we will focus on the unsupervised case, especially the projection
methods



A Note on Notation

The data matrix X is a p>X n matrix, sometimes p>>n (for example, p
gene expression levels for n different samples)

A X1
X F
Xy e X, o X



Matrix multiplication
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Pierce, Rod. (6 Oct 2014). "How to
Multiply Matrices". Math Is Fun.
mXx X Xp = MXp http://www.mathsisfun.com/algebra/mat

rix-multiplying.html



~ Mapping data to lower-dimensional space

by linear combination

Seek a factorization of the data matrix X

X .~=B R

pxn pxk " “kxn
where column of the matrix B are k basis vectors, and n columns of
the matrix R are representations of the n columns of X defined on B.
k <= min (p,n). Both B and R contain useful information!

Or, in other words, find a projection matrix of X that maps it to a lower
dimensional space:
SeasE e

Different methods have different constraints on B (or P) and different
criteria of approximating X

kxn kxp
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Principal Component Analysis (PCA)

An intuitive approach to the dimension reduction problem

Project data matrix X to a new space, such that:

* Axes of the new coordinate system are orthogonal and of the same scale as
in the original space

* Projected values preserve variance of the original data
* Projected vectors are uncorrelated

In other words, we want to rotate the original axes and align them with
directions with largest variance



A two-dimensional example of PCA
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PCA reveals redundancy in the data

Shlens, 2003

e —

low redundancy

high redundancy
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Find a projection of X as its representation:
Z [

Columns of P-! are orthogonal and of unit length. Z captures the variance of X,
such that

i(Xi _IUi)(Xi _/Ji)T = i(zi —,Lli*)(zi _:ui*)T

X; and z; are rows of X and Z. Or in matrix form:
tr(Z(X)) =tr(x(2))
2(Z2) =diag(4, 4, K 1))

2(X) is the covariance matrix of X. Values of A are as large as possible.
Rows of Z are uncorrelated principal components of X.
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Solution of Principal Components

It turns out that the columns of P are unitary eigenvectors of X(X), and A, ,
Ay, ... A, are the corresponding eigenvalues.

P2 =P P P=I,
The ith principal component z; =p; X, p; is the ith row of P.
Var(z;) = A

z;accounts for A;/ X A of total variance in X. LetA; > A, - - - >, the first k PCs
with significantly large A values will capture the majority of variability in X.
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— Singular Value Decomposition (SVD)

PCA is closely related to SVD.
Let A beap X n matrix of real numbers, then there existan p X p orthogonal
matrix U and a n X n orthogonal matrix V such that

T
Apxn = U pxprannxn

A U D

vI
al 1 1n ull uli Hlp d[ 1 0
: : Vi Vi3
al] ain = Z!,'_’] ull uZp s .
0 - dm; v i v
nl nn
| By - T gy | [ My Wy it ] Juteea 0 . (mxn)
(pxn) (p*p) (pxn)

where d;;> 0 are singular values of A, rows of U are p orthogonal eigenvectors of
AAT | rows of V are n orthogonal eigenvectors of ATA. Non-zero d;;? are the same
non-zero eigenvalues of AAT and ATA.
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~ Obtain PCs by SVD

[f the data matrix X is row-centered, then the sample covariance matrix S =
Y(X) = XXT. After factorizing X by SVD we have

S=uUD?U’
D°=A
tr(S) =tr(D?)

Rows of U are unitary and mutually orthogonal, D? is diagonal and its elements
are eigenvalues of XXT , U and D? are exactly what we want for PT and X(Z).

Note: we can always row-center X by right-multiplying
.- (1/n) 117=1, -1
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Interpretation of PCA
Apply PCA on X with SVD:
X=UDV' =UZ

Z=DV'

Elements of U are called loadings. Columns of U (eigenvectors of XXT) are
loading vectors that define the rotation directions of the original axes.

Elements of Z are called scores. Each column of Z is a representation of the
corresponding column of X in the new space of U. Each row of Z is a principal
component.

If the first k (k<p) rows of U capture a sufficient large portion of the variance of
X, X can be reduced to a lower-dimensional space. X = U, Z,



PCA as an exploratory analysis

PCA is often a pre-processing step before clustering or regression analysis

ﬂ. i |
e T
vt
E 4
g o
B
B
A .
E 3 :
B 1=
E .oy
3 -r.l‘. -
) .
q =1 [ ]
“-I
=]
‘T T T T T T
-0 05 0.0 0E 1.0
FArst principal component

ISLR, chapter 1o




s

~ How Many PCs?

X can be reduced to a k-dimensional space by only looking at the first k
components that explained large proportions of variance

Find the ‘elbow’ on the ‘scree plot’
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To standardize or not to standardize

PCA can be performed on the sample covariance matrix S or the sample
correlation matrix R.

The latter is equivalent to performing PCA on the standardized data (each of
the p feature measurements is normalized to have mean o and sd 1).

If the observed features are of different units, it is recommended to standardize
the data.
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~ A use case in genomics study

Apply PCA to the correlation
matrix of different probe sets
(gene expression features)

Extract transcriptional
components (eigenvector
loadings) and activity
measurements (principal
component scores).

Gene expression analysis identifies global gene dosage
sensitivity in cancer

Rudolf $ N Fehrmann'>!2, Juha M Karjalainen>!2, Malgorzata Krajewska', Harm-Jan Westra?, David Maloney?,
Anton Simeonov?, Tune H Pers*7, Joel N Hirschhorn* ®%, Ritsert C Jansen®, Erik A Schultes!®!1]

Herman H H B M van Haagen'", Elisabeth G E de Vries!, Gerard ] te Meerman?, Cisca Wijmenga?,
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Limitations of PCA

PCA is a linear method, it may not be productive if the features are non-linear.
Extensions such as kernel-PCA may improve the analysis.
Projection by PCA
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Limitations of PCA (cont’d)

PCA captures variance of the data, but variance may not be informative.

Projective methods with different constraints may be more desirable.

Independant-variable basis

- - AP P T
-1 T l:.' MR 2 1 .-L

3 :
— PCA axes

Observation basis

>3 -2 -1 o0 1 2 3
a=x +y
http://gael-varoquaux.info/science/ica_vs_pca.html
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Independent Component Analysis (ICA)

Looking for linear transformation that result in statistically
independent non-Gaussian signals

X=AS
S=A1 X
Where A is the mixing matrix, its columns are latent vectors. Rows of S
are statistically independent signal sources with unit variance.
Based on higher order statistics rather than variance

Stronger constraints than PCA (independence in addition to lack of
correlation)
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/Formulating ICA

In information theory, dependence among random variables is measured by
mutual information:

(Y, Y, K ym)=iH(yi)—H(y)

Where H(y;) is the differential entropy of individual y,, and H(y) is the
differential entropy of the joint distribution.

Ify,, ¥y, ... ¥, are uncorrelated, mutual information can be expressed in the
form of negentropy J(y):

13 ¥2K ¥2) =3) -2 3(3)

Where J(y) measures the distance of y from normality:

J (y) =H (ygauss) —-H (y)
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F Formulating ICA

Negentropy J(:) is invariant under invertible linear transformations.
Therefore, the search for a linear transformation of X such that Z=WX
has minimized mutual information is equivalent to finding a W such
that negentropy of each row in Z is maximized, under the constraint
that rows of Z are uncorrelated.

(2, 2,K 2,) = 3w -3 3(2)=3() - D (2)
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Formulating ICA

Negentropy J(z;) is not easy to compute. But it can be approximated using a
contrast function G(+):

J(2) ~[E{G(@)}-E{GM)T
Where G(+) is a non-quadratic function, and v is a standardized Gaussian

random variable. Z and W can be found by maximizing the approximation of
each J(z;), and they are estimates of S and A .

Different algorithms utilized different contrast functions. Some common
choices are

G,(y) =%Iog(cosh(a1y)) G,(y) = —iexp(—azy2 12)  Gs(y)= —ai y*

5 3



CA finds non-Gaussian directions

0.7

PDF

0.6
0.5
0.4
0.3
0.2
0.1

0.0/

— PCA axes
ICA axes

http://gael-varoquaux.info/science/ica_vs_pca.html



/

—

e
//
Applicati f ICA ion dat
Hypothesis ICA algorithms
TT - - - ---= I
! | , '
| X=AS | '
I S " X :
: Unknown 1 - | Known microarray | . Catput of TCA |
independent A | gene expression | W algorithms |
I coefficients | data | |
: Latent | |  Demixing |
e variables | Lomawix |
Wi EENEes
= o
& = =
E 3
= ~
% . e Py i
XT: gene profiles A: latent variables 57 gene signatures
(r=m) (r=m) (m=m)

Kong et al., Biotechniques, 2008



S

/Limitations of ICA

No clear selection criteria for components.
Initial value sensitive.

Does not work well if distribution of the signal sources is close to
Gaussian.
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Non-negative Matrix Factorization (NMF)

Given a nonnegative matrix X, find nonnegative matrices W and H, such
that

X =W H

pxk kxn

Columns of W are basis vectors, columns of H are coefficients for each
sample. The rank k has to be determined based on heuristics.



Comparison between PCA and NMF

PCA extracts distributed representations on orthogonal directions
NMF learns additive combination of parts

Original
PCA
NMF e i
e, " ] o
=+ Py i N i
= - = o g =n
e
X U e N
o e e e t -
e T e )
o

Lee & Seung, 1999, Nature
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Geometric interpretation of NMF

The factorization X= WH has a geometric counterpart: all data points X
all lie in the convex cone generated by column vectors of W, which is
embedded in the first orthant of R?. In fact, if all the data points are
strictly positive, there are many such cones, and the factorization is not
unique.

P

Geometrically, the NMF method seeks to approximate the conic hull of X
by a low-dimensional cone in the first orthant. Data points lie outside the
cone cannot be reconstructed.



Geometric interpretation of NMF
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NMF of gene expression data
A (rank M) = W H (rank k=2)

M observables
{samples) k metagenas M samplas
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Brunet et al., 2004, PNAS
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Determine the rank of factorization

Cophenetic Correlation
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1: 1: 1 ’ ; |
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cancer samples
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- Limitations of NMF

Usually the NMF solution is not unique
[nitial value sensitive
High computational complexity

Projection of new data could be confusing (W is not always invertible;
new H may contain negative values)
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What to use?

PCA is the most common method, but its interpretation may not be clear

ICA extracts non-Gaussian information from the data, but it may not be clear
which components are more ‘important’.

NMF produces additive features, but it’s heavy in computation, and the
solution can be unstable

15 0 05 1 15
Zinovyev et al., Biochem Biophys Res Commun, 2013
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Nonlinear extensions: kernel PCA

In PCA, X is projected to Z=DVT, where columns of VT are eigenvectors of X"X.
Kernel PCA, instead, seeks to find representation of X by finding eigenvalues and
eigenvectors of a centered kernel matrix K'=K-1 K-K1-1yK1y, where K;=k(x;
X;)=D(%;) T O(x;)

linear PCA kernel PCA
‘A R b R L A

..::'!I!" _r - ' . ::: _. mamn amnann el I:f 3 - I
VAN s 1
LAXS S Sy - ———
; .._.i-.r. :.._::-%;:;;L L) ___-- i ='E . _::-' LF
N k) =) A kxy) = @yt 1

Scholkopf et al., ICAAN’g7



— The kernel trick

The trick is, ®(-) can be a very complex function while k(-) remains relatively
simple. kPCA projects the data to a nonlinear space without explicitly calculate
each projection directions.

A popular kernel functions is the Gaussian Radial Basis Function (RBF):
Zk (Xik T
20°

ncentric circles B
15 0008 First principal component after RBF Kernel PCA

k(xi,xj):exp —

gamma = 15

10 govde T b s B 0.008
t” oy % on e
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http:// sebastianraschka.com/Articles/ 2014_kernel_pca.html
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Dimension reduction with neural networks

A feed-forward neural network with non-linear activation function can approximate any
function.

An autoencoder network trained to reconstruct its input may represent the data in a
lower dimensional latent space.

encode > decode >

input hidden output

http://blog.fastforwardlabs.com/2016/08/12/introducing-variational-autoencoders-in-prose-and.html
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Visualizing high-dimensional data

Multidimensional scaling (MDS)
t-Distributed Stochastic Neighbor Embedding (t-SNE)
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 MDS

Multidimensional Scaling (MDS) maps high-dimensional data to low-
dimensional space. It preserves the pairwise distance (or dissimilarity)
between original data points.

This can be done in linear, nonlinear or nonmetric manner.
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Metric MDS
In the case of ‘classical’ MDS, it Voting patterns
is equivalent to PCA. ‘
Szl (dIJ —Hz iy H)z -
i<j 2 - . |
Nonlinear MDS such as 3 ; L . |
Sammon mapping preserves o T
the nearby points: N '
it (dij _Hzi = ZjH)2 T e 2
Sl Zdu ; T
i<j

© Andrewmans327/Wikipedia Commons
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Non-metric MDS

Use an increasing function of the original distance (preserve ranks).

Z(g(dij)_Hzi _ZJH)2
Sym (Zl’ZZL Zn): = 2
> [z

i<]

Have to optimize both the new coordinates and the function 6.

Enables nonlinear transformation.
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-SNE

Preserve the joint probabilities of pairs of original data.

Model the original data with Gaussian distribution, represent in lower
dimensional space with t-distribution, minimize the Kullback-Leibler
divergence as the cost function.

_exp(—|xi—x;*/267) __ PjlitPij
e R TI E )if = T
YrzieXp (=[x —xx[*/207)
| oy —1 .
gy =D o= K1(PI0) = 3 pylos Y.
St (L4 vk —v1]2)” P 1y

Computationally expensive, have to select random subsets for large data.



MDS

t-SNE vs. nonlinear metric
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(b) Visualization by Sammon mapping.

(a) Visualization by t-SNE.

Van Der Maaten and Hinton, 2008



“I still believe that unsupervised learning is going to be crucial, and
things will work incredibly much better than they do now when we get
that working properly, but we haven't yet. ”

- Geoffrey Hinton, 2017
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Homework

Cluster analysis and dimension reduction on a subset of the MNIST
data
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“Further reading

Text book:

The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Hastie T, Tibshirani R,
Friedman J. Springer: 2011. Chapter 14.

PCA:

Shlens J (2003). A tutorial on principal component analysis.

ICA:

Hyvarinen A (1997). Independent Component Analysis by Minimization of Mutual Information.

Lee SI, Batzoglou S (2003). Application of independent component analysis to microarrays. Genome Biol.
4(11):R76.

NMEF:

Lee DD, Seung HS (1999). Learning the parts of objects by non-negative matrix factorization. Nature.
401(6755):788-91.

General Topics:

Zinovyev A, Kairov U, Karpenyuk T, Ramanculov E (2013). Blind source separation methods for
deconvolution of complex signals in cancer biology. Biochem Biophys Res Commun. 430(3):1182-7.
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