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Biomedical data are usually high-dimensional 
 Number of samples (n) is relatively 

small whereas number of features (p) 
can be large 

 Sometimes p>>n 
 



Problems 
 Difficulty in interpretation of data 
 The curse of dimensionality 

 Data points are ‘sparse’ in high-dimensional space 
 Statistical methods that rely on ‘local’ properties may not work well 
 Extracted patterns may be unstable 

 Dimension reduction is usually the first step 
 



Dimension Reduction 
 Mapping the data to a low-dimensional space  

 For each p-dimensional data point                            ,        find a k-
dimensional representation                                  that captures the content of 
original data, where 

 When there is additional information (supervised) 
 feature selection, ridge regression, LASSO, and other regularization 

methods 
 When we only have X alone (unsupervised) 

 feature extraction with linear transformation (projection) of the original 
data 

 nonlinear extensions 
 In this lecture, we will focus on the unsupervised case, especially the projection 

methods   
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A Note on Notation 
 The data matrix X is a p×n matrix, sometimes p>>n (for example, p 

gene expression levels for n different samples) 
 



Matrix multiplication 

Pierce, Rod. (6 Oct 2014). "How to 
Multiply Matrices". Math Is Fun. 

http://www.mathsisfun.com/algebra/mat
rix-multiplying.html 



Mapping data to lower-dimensional space 
by linear combination 
 Seek a factorization of the data matrix X                                           
  
 where column of the matrix B are k basis vectors, and n columns of 

the matrix R are representations of the n columns of X defined on B. 
k <= min (p,n). Both B and R contain useful information! 

 Or, in other words, find a projection matrix of X that maps it to a lower 
dimensional space: 

 
 Different methods have different constraints on B (or P) and different 

criteria of approximating X  
 

nkkpnp ××× ≈ RBX

nppknk ××× = XPR



Principal Component Analysis (PCA) 
 An intuitive approach to the dimension reduction problem 
 Project data matrix X to a new space, such that: 

 Axes of the new coordinate system are orthogonal and of the same scale as 
in the original space 

 Projected values preserve variance of the original data 
 Projected vectors are uncorrelated 

 In other words, we want to rotate the original axes and align them with 
directions with largest variance 
 



A two-dimensional example of PCA 

ISLR, chapter 6 



PCA reveals redundancy in the data 

Shlens, 2003 



Mathematically… 
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Find a projection of X as its representation:   
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xi  and zi are rows of X and Z. Or in matrix form:  
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Columns of P-1 are orthogonal and of unit length. Z captures the variance of X, 
such that   

Σ(X) is the covariance matrix of X. Values of λ are as large as possible. 
Rows of Z are uncorrelated  principal components of X. 



Solution of Principal Components 
It turns out that the columns of P-1 are unitary eigenvectors of Σ(X), and λ1 , 
λ2 , …  λp are the corresponding eigenvalues.  
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p
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The ith principal component zi =pi X, pi is the ith row of P. 

iVar λ=)( iz
zi accounts for λi / Σ λ  of total variance in X. Let λ1 ≥ λ2 · · · ≥ λ p , the first k PCs 
with significantly large λ values will capture the majority of variability in X. 



Singular Value Decomposition (SVD) 
PCA is closely related to SVD. 
Let A be a p × n  matrix of real numbers, then there exist an p × p  orthogonal 
matrix U and a n × n orthogonal matrix V such that  

T
nnnpppnp ×××× = VDUA

where dii ≥ 0 are singular values of A, rows of U are p orthogonal eigenvectors of 
AAT , rows of V are n orthogonal eigenvectors of ATA. Non-zero dii

2
 are the same 

non-zero eigenvalues of AAT and ATA. 



Obtain PCs by SVD 
If the data matrix X is row-centered, then the sample covariance matrix S = 
Σ(X) = XXT. After factorizing X by SVD we have 

Note: we can always row-center X by right-multiplying  
In – (1/n) 11T= In -1N 
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Rows of U are unitary and mutually orthogonal, D2 is diagonal and its elements 
are eigenvalues of XXT , U and D2 are exactly what we want for PT and Σ(Z).  



Interpretation of PCA 

 Elements of U are called loadings. Columns of U (eigenvectors of  XXT) are 
loading vectors that define the rotation directions of the original axes.  

 Elements of Z are called scores. Each column of Z is a representation of the 
corresponding column of X in the new space of U. Each row of Z is a principal 
component.  

 If the first k (k<p) rows of U capture a sufficient large portion of the variance of 
X, X can be reduced to a lower-dimensional space. X ≈ Uk Zk   

Apply PCA on X with SVD:  
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PCA as an exploratory analysis 
 PCA is often a pre-processing step before clustering or regression analysis 

ISLR, chapter 10 



How Many PCs? 
 X can be reduced to a k-dimensional space by only looking at the first k 

components that explained large proportions of variance 
 Find the ‘elbow’ on the ‘scree plot’ 

ISLR, chapter 10 



To standardize or not to standardize 
 PCA can be performed on the sample covariance matrix S or the sample 

correlation matrix R. 
 The latter is equivalent to performing PCA on the standardized data (each of 

the p feature measurements is normalized to have mean 0 and sd 1). 
 If the observed features are of different units, it is recommended to standardize 

the data. 
 



Effects of standardization 

ISLR, chapter 10 



A use case in genomics study 

 Apply PCA to the correlation 
matrix of different probe sets 
(gene expression features) 

 Extract transcriptional 
components (eigenvector 
loadings) and activity 
measurements (principal 
component scores). 



Limitations of PCA 
 PCA is a linear method, it may not be productive if the features are non-linear. 
 Extensions such as kernel-PCA may improve the analysis. 

http://scikit-learn.org/stable/auto_examples/decomposition/plot_kernel_pca.html 



Limitations of PCA (cont’d) 
• PCA captures variance of the data, but variance may not be informative. 
• Projective methods with different constraints may be more desirable.  

http://gael-varoquaux.info/science/ica_vs_pca.html 



Independent Component Analysis (ICA)  
 Looking for linear transformation that result in statistically 

independent  non-Gaussian signals  
X=AS 

S=A-1 X 
    Where A is the mixing matrix, its columns are latent vectors. Rows of S 

are statistically independent signal sources with unit variance.  
 Based on higher order statistics rather than variance 
 Stronger constraints than PCA (independence in addition to lack of 

correlation) 
 



Formulating ICA 
In information theory, dependence among random variables is measured by 
mutual information: 
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Where H(yi) is the differential entropy of individual yi, and H(y) is the 
differential entropy of the joint distribution.  
If y1, y2 … ym are uncorrelated, mutual information can be expressed in the 
form of negentropy J(y): 
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Where J(y) measures the distance of y from normality:    
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Formulating ICA 
Negentropy  J(·) is invariant under invertible linear transformations. 
Therefore, the search for a linear transformation of X such that Z=WX 
has minimized mutual information is equivalent to finding a W such 
that negentropy of each row in Z is maximized, under the constraint 
that rows of Z are uncorrelated.    

∑∑
==

−=−=
m

i
i

m

i
im zJJzJJzzzI

11
21 )()()()(),( xwxK



Formulating ICA 
Negentropy  J(zi) is not easy to compute. But it can be approximated using a 
contrast function G(·):  

{ } { } 2])()([)( νGEzGEzJ −≈
Where G(·) is a non-quadratic function, and ν is a standardized Gaussian 
random variable. Z and W can be found by maximizing the approximation of 
each J(zi), and they are estimates of S and A-1 . 
 
Different algorithms utilized different contrast functions. Some common 
choices are  
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ICA finds non-Gaussian directions 

http://gael-varoquaux.info/science/ica_vs_pca.html 



Application of ICA on expression data  

Kong et al., Biotechniques, 2008 



Limitations of ICA 
 No clear selection criteria for components. 
 Initial value sensitive. 
 Does not work well if distribution of the signal sources is close to 

Gaussian. 
 



Non-negative Matrix Factorization (NMF) 

nkkpnp ××× ≈ HWX

Given a nonnegative matrix X, find nonnegative matrices W and H, such 
that  

Columns of W are basis vectors, columns of H are coefficients for each 
sample. The rank k has to be determined based on heuristics.  



Comparison between PCA and NMF 
 PCA extracts distributed representations on orthogonal directions 
 NMF learns additive combination of parts 

 

Lee & Seung, 1999, Nature 



Geometric interpretation of NMF 
The factorization X= WH has a geometric counterpart: all data points x 
all lie in the convex cone generated by column vectors of W, which is 
embedded in the first orthant of R p. In fact, if all the data points are 
strictly positive, there are many such cones, and the factorization is not 
unique. 
 
Geometrically, the NMF method seeks to approximate the conic hull of X 
by a low-dimensional cone in the first orthant. Data points lie outside the 
cone cannot be reconstructed.  



Geometric interpretation of NMF 

Bauckhage, 16th LWA Workshops, 2014 



NMF of gene expression data 

Brunet et al., 2004, PNAS 



Determine the rank of factorization 
Cophenetic Correlation 

Brunet et al., 2004, PNAS 



NMF is widely used in classification of 
cancer samples  

Tamayo et al., 2007, PNAS 



Limitations of NMF 
 Usually the NMF solution is not unique 
 Initial value sensitive 
 High computational complexity 
 Projection of new data could be confusing (W is not always invertible; 

new H may contain negative values) 
 



What to use? 
 PCA is the most common method, but its interpretation may not be clear 
 ICA extracts non-Gaussian information from the data, but it may not be clear 

which components are more ‘important’.  
 NMF produces additive features, but it’s heavy in computation, and the 

solution can be unstable 
 

Zinovyev et al., Biochem Biophys Res Commun, 2013 



Nonlinear extensions: kernel PCA 
In PCA, X is projected to Z=DVT, where columns of VT are eigenvectors of XTX. 
Kernel PCA, instead, seeks to find representation of X by finding eigenvalues and 
eigenvectors of  a centered kernel matrix K*=K-1NK-K1N-1NK1N,  where Kij= k(xi, 
xj)=Φ(xi)TΦ(xj) 
 

Scholkopf et al., ICAAN’97 



The kernel trick 
The trick is, Φ(·) can be a very complex function while k(·) remains relatively 
simple. kPCA projects the data to a nonlinear space without explicitly calculate 
each projection directions. 
A popular kernel functions is the Gaussian Radial Basis Function (RBF): 
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http://sebastianraschka.com/Articles/2014_kernel_pca.html 



Dimension reduction with neural networks 
 A feed-forward neural network with non-linear activation function can approximate any 

function.  
 An autoencoder network trained to reconstruct its input may represent the data in a 

lower dimensional latent space. 

http://blog.fastforwardlabs.com/2016/08/12/introducing-variational-autoencoders-in-prose-and.html 



Visualizing high-dimensional data 
 Multidimensional scaling (MDS) 
 t-Distributed Stochastic Neighbor Embedding (t-SNE) 



MDS 
 Multidimensional Scaling (MDS) maps high-dimensional data to low-

dimensional space. It preserves the pairwise distance (or dissimilarity) 
between original data points.  

 This can be done in linear, nonlinear or nonmetric manner. 

 



Metric MDS 
 In the case of ‘classical’ MDS, it 

is equivalent to PCA. 
 
 

 Nonlinear MDS such as 
Sammon mapping preserves 
the nearby points:  
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Non-metric MDS 
 Use an increasing function of the original distance (preserve ranks).  

 
 
 
 

 Have to optimize both the new coordinates and the function θ. 
 Enables nonlinear transformation. 
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t-SNE 
 Preserve the joint probabilities of pairs of original data. 
 Model the original data with Gaussian distribution, represent in lower 

dimensional space with t-distribution, minimize the Kullback-Leibler 
divergence as the cost function.  
 
 
 
 
 

 Computationally expensive, have to select random subsets for large data. 
 



t-SNE vs. nonlinear metric MDS  

Van Der Maaten and Hinton, 2008 



“I still believe that unsupervised learning is going to be crucial, and 
things will work incredibly much better than they do now when we get 
that working properly, but we haven't yet. ” 
 

- Geoffrey Hinton, 2017 



Homework 
 Cluster analysis and dimension reduction on a subset of the MNIST 

data 



Further reading 
Text book: 
The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Hastie T, Tibshirani R, 

Friedman J. Springer: 2011. Chapter 14. 
PCA: 
Shlens J (2003). A tutorial on principal component analysis.  
ICA: 
Hyvärinen A (1997). Independent Component Analysis by Minimization of Mutual Information. 
Lee SI, Batzoglou S (2003). Application of independent component analysis to microarrays. Genome Biol. 

4(11):R76.  
NMF: 
Lee DD, Seung HS (1999). Learning the parts of objects by non-negative matrix factorization. Nature. 

401(6755):788-91. 
General Topics: 
Zinovyev A, Kairov U, Karpenyuk T, Ramanculov E (2013). Blind source separation methods for 

deconvolution of complex signals in cancer biology. Biochem Biophys Res Commun. 430(3):1182-7. 
 


	Dimension Reduction
	Biomedical data are usually high-dimensional
	Problems
	Dimension Reduction
	A Note on Notation
	Matrix multiplication
	Mapping data to lower-dimensional space by linear combination
	Principal Component Analysis (PCA)
	A two-dimensional example of PCA
	PCA reveals redundancy in the data
	Mathematically…
	Solution of Principal Components
	Singular Value Decomposition (SVD)
	Obtain PCs by SVD
	Interpretation of PCA
	PCA as an exploratory analysis
	How Many PCs?
	To standardize or not to standardize
	Effects of standardization
	A use case in genomics study
	Limitations of PCA
	Limitations of PCA (cont’d)
	Independent Component Analysis (ICA) 
	Formulating ICA
	Formulating ICA
	Formulating ICA
	ICA finds non-Gaussian directions
	Application of ICA on expression data 
	Limitations of ICA
	Non-negative Matrix Factorization (NMF)
	Comparison between PCA and NMF
	Geometric interpretation of NMF
	Geometric interpretation of NMF
	NMF of gene expression data
	Determine the rank of factorization
	NMF is widely used in classification of cancer samples 
	Limitations of NMF
	What to use?
	Nonlinear extensions: kernel PCA
	The kernel trick
	Dimension reduction with neural networks
	Visualizing high-dimensional data
	MDS
	Metric MDS
	Non-metric MDS
	t-SNE
	t-SNE vs. nonlinear metric MDS 
	Slide Number 48
	Homework
	Further reading

